
Automated data ingestion for the Australian Ocean Data Network

Marton Hidas, Sebastien Mancini, Roger Proctor, Peter Blain, Leigh Gordon,

Angus Scheibner, Laurent Besnard

University of Tasmania

6 November 2018

Australia’s Integrated Marine Observing System (IMOS)



12 minutes, plus 3 minutes for questions

1. About IMOS

2. Data providers versus data users

3. Automated pipeline

4. Future improvements

Outline of the talk



IMOS Facilities

https://portal.aodn.org.au

All data 

discoverable, 

accessible, 

usable and 

reusable



Why AODN?
Data providers Data users/use cases

Diversity in
● Technologies
● Instruments
● Platforms
● Organisations
● People

● Research scientists
● Government 

departments
● Private industry
● Fisheries
● Managers
● Policy makers
● Shipping
● Recreational 

fishing/boating
● Etc…

Diversity in
● Data products 

required
● Data volume 

required
● Method of access
● Preferred formats
● Tools used



Why AODN?
Data providers Data users/use cases

Each provider 
has to cater 
for many 
users



Why AODN?
Data providers Data users/use cases

Each user 
may need to 
obtain data 
from multiple 
sources



Why AODN?
Data providers Data users/use cases

That’s a lot of
unique 

connections!
Diversity2

Each user 
may need to 
obtain data 
from multiple 
sources

Each provider 
has to cater 
for many 
users



Why AODN?
Data providers Data users/use cases

Standard 
ingestion

Standard 
access

AODN



IMOS standard ingestion: Key design criteria

• Keep data safe

• Make only high quality data for users

• Do not increase load on front facing systems

• Make data available as quickly as possible 

• Robustness

• Transparency



Architecture overview of the pipeline

Data providers

Incoming

directory

Watch service Broker (RabbitMQ)

Queue 1 / Task 1
Queue 2 / Task 1
Queue 3 / Task 1
Queue 1 / Task 2

Consumer (Celery worker)

Worker 1 / Task 1
Worker 2 / Task 1
Worker 3 / Task 1

FTP

Rsync

AODN Core Package:

• Generic handler
• File State manager
• Logger
• Posthook
• Tests

AODN Data Package:

• Specific handler
• Specific tests



Pipeline workflow: the state machine
Incoming

data files

ETL
(Talend)

Error 
files

Metadata
(GeoNetwork)

Data & Maps
(GeoServer)

Pre-
process

Resolve

Process

Validate

Post-
process

Publish

Notify
Notify 
error

Handle 
error

Data providers

Data 

providers 

(and AODN 

staff) are 

notified via 

a detailed 

email report.

Storage
(AWS S3)

DB
(Postgres)

Compliance checker



Pipeline workflow: the state machine
Incoming

data files

ETL
(Talend)

Error 
files

Metadata
(GeoNetwork)

Data & Maps
(GeoServer)

Pre-
process

Resolve

Process

Validate

Post-
process

Publish

Notify
Notify 
error

Handle 
error

Data providers

Data 

providers 

(and AODN 

staff) are 

notified via 

a detailed 

email report.

Storage
(AWS S3)

DB
(Postgres)

Some Numbers:

32 Organisations providing data
60 Data uploaders (+ a handful that we pull from)
24 Handler classes
43 Ingestion pipelines
86 Data/metadata “Harvesters” (95 Harvest jobs)
204 Data collections in the AODN Portal



Benefits: Python ecosystem

AODN Python 
packages

Compliance checker

netCDF-4 
python



Benefits: Python ecosystem – One outlier

Talend
ETL Tool(Java)

Compliance checker

netCDF-4 
python

AODN Python 
packages



Benefits: Test and deploy code in confidence



Benefits: Test and deploy code in confidence

Integration



Benefits: Test and deploy code in confidence

627 Tests 
passed !!!



Benefits:

• Generic code 

• Increased confidence:
• All features can be tested from one version to the next

• Easier to debug

• Better control of the different version
• Workflow to build, package and deploy
• What version is deployed on which environment (Release candidate or 

Production)

• Faster publication of new data

• Improved consistency within data collections



Future improvements

• Reporting, creation of dashboard in Sumologic

• Improve code:
• Replace Talend (Java) by a similar tool in Python for a consistent environment

• Use of AWS Batch to improve scalability:
• No conflict between pipelines

• Multiple queues for different data streams

• Only running when needed 

https://github.com/aodn/python-aodncore
https://github.com/aodn/python-aodndata




