Integrating Data and Information Across Observing Systems

Kevin O'Brien: University of Washington, WA, USA

Steven Worley: UCAR, CO, USA

Bob Simons: NOAA Southwest Fisheries, CA, USA

Eugene Burger: NOAA PMEL, WA, USA

Benjamin Pfeil

Bjerknes Climate Data Centre University of Bergen, Norway

Integration and Interoperability, what is it?

Three broad categories of integration by example:

- 1. Collecting single observing system observations
 - All data from the Surface Ocean CO₂ Atlas (SOCAT) project in a common data and metadata format
- 2. Multiple observing systems, across an EOV/ECV (Temperature)
 - Surface Temp from moored and drifting buoys, ARGO, and hydrographic stations
- 3. Cross-system, multi-variable reference collections
 - World Ocean Database (WOD), International Comprehensive Ocean-Atmosphere Data Set (ICOADS), Surface Ocean CO₂ Atlas (SOCAT)

Interoperability – definition¹

The ability of data or tools from <u>non-cooperating resources</u> to integrate or work together with minimal effort.

¹ Wilkinson, M. D. et al. *The FAIR Guiding Principles for scientific data management and stewardship.* Sci. Data 3:160018 doi: 10.1038/sdata.2016.18 (2016).

FAIR = Findable, Accessible, Interoperable, Reusable

- Example Expedia.com: "Find me a cheap flight"
 - Poll many systems in real time
 - Using known protocols, i.e. access mechanism

Surface Ocean CO2 Atlas (SOCAT) v3 interoperable data access

Because data are available through ERDDAP framework

- No Download necessary (DAP access avaialable)
- User can look at whole "collection" of data as a single dataset
- Many applications can directly access and use data from ERDDAP
- Easy to leverage existing tools to visualize and analyze data

Digression: DAP in the *modeling* community

Data Access Protocol (DAP) (originally Distributed Oceanographic Data System (DODS)), revolutionized how data was accessed

- User could use familiar applications and not worry about data formats
- Users could access complete model runs with a single command (time series analysis, etc)
- Allows for access of heterogeneous datasets in a highly distributed environment

OPeNDAP servers (Hyrax, THREDDS data server) are now the de facto way to serve such data.

Many barriers to interoperable access of gridded/model data have been removed thanks to DAP

 See Unified Access Framework project which offers access to 6K+ datasets in a uniform way

Digression: DAP for the ocean observation community

ERDDAP is DAP, but for in situ data!

- ERDDAP can also revolutionize how people serve, access and use observational data
- ERDDAP is NOT a portal it's a framework upon which portals can easily be built
- From Provider standpoint:
 - Can ingest many existing formats and make available through interoperable web services – flexible!
- From user standpoint
 - Can access and use observations and "collections" of observations with familiar clients without worrying about data format
 - Provides machine to machine access with RESTful web services

Digression: DAP for the ocean observation community

ERDDAP is DAP, but for in situ data!

- Reducing the time required to deal with data management allows more time for scientific productivity
- Does it solve all the problems?
 - No. But can significantly improve integration of many types of data already.
 - Leveraging existing standards, conventions and frameworks, such as ERDDAP, allows us to solve many of these issues at significantly reduced costs.

JCOMM Observations Coordination Group (OCG) ACTION: to develop vision for integration of data across observing systems.

A Piloting (prototyping) Activity to Address Key Challenges of the JCOMM OCG Task Team on Integrated Data Access

- Chose to focus on Tropical Pacific in support of TPOS 2020
- Build an integrated framework of ocean observation data from multiple platform networks or data sources:
 - Drifting Buoys
 - Argo Floats
 - SOT/VOS data (CCHDO)
 - SOCAT underway data
 - IOOS Glider data
 - OceanSITES stations
 - Tropical Moorings, Stratus, WHOTS, CCE1,CCE2
 - Real Time data from OSMC GTS
- Selected ERDDAP as data framework for integrating the observations

JCOMM Observations Coordination Group (OCG) ACTION: to develop vision for integration of data across observing systems.

Further possibilities

Integrating across EOV – Temperature example

JCOMM OCG ACTION: to develop vision for integration of data across observing systems.

use http://ferret.pmel.noaa.gov/generic/erddap/tabledap/integrated_temp.nc

Moving Forward.....

JCOMM Data Management Coordination Group (DMCG) recommendations:

- Observation Coordination Group continue working with global observing networks to implement data interoperabilty framework in close consultation with DMCG
- Welcomed proposed OCG pilot project to demonstrate integration by EOV
- Requested OCG refine the vision of EOV pilot project and consult with observing networks to determine interest
- OCG to engage with GOOS Regional Alliances (GRA) to provide data framework in support of GRA data portals and ODP

Thank you!

Kevin O'Brien: Kevin.M.O'Brien@noaa.gov

Benjamin Pfeil: benjamin.pfeil@uib.no

ERDDAP: https://coastwatch.pfeg.noaa.gov/erddap/index.html

OSMC: <u>www.osmc.noaa.gov</u>

Poster 102: Global Data Assembly Centre for Marine Biogeochemistry will be build services on ERDDAP!