

Noumea : a Model-Driven Framework for NetCDF-CF Data Extraction and Analysis

Jean-Philippe Babau, Jannaï Tokotoko, Oumar Kande, Abdallahi Bilal Lab-STICC / UBO / UEB, Brest, France

babau@univ-brest.fr

NetCDF, standards and tools

- NetCDF : a generic file standard for array-oriented scientific data
 - File format (machine independent)
 - Data (variable and dimensions) and metadata (attributes)
 - Data access libraries (Java, C, C++, Fortran, Python, ...)
 - Standards for environmental data (Climate and Forecast, OceanSITES, ...)
 - Conventions about variables and attributes (naming, types, ...)
 - Considering space and time dimensions
 - Is a NetCDF standard compliant?
 - Can we correct it to respect the standard ?
 - What kind of data are present in a NetCDF file ?
 - Time series, trajectories, profiles, ...
 - What can we do with data ?
 - Visualization, analysis tools

3

• Problem Overview

• The Noumea approach

Conclusion and Ongoing Works

The Noumea approach : 5 STEPS

- Model Driven representation
 - A concept definition is a class with constraints
- Verification
 - Standard
 - Longitude, Latitude, Vertical, Time axis
 - Correction
- Normalize
 - Add information, if necessary
 - Naming convention
 - Unity
- Optimal storage
- Patterns extraction
 - Time series, profiles, trajectories, ...
- Usage based on generic reusable tools
 - CMS-like tools
 - Visualization and analysis tools

Verification

- Based on standards
- C&F example : existing coordinates and time axis
 - One variable for each axis (Longitude, Latitude, Vertical, Time)
 - One corresponding dimension
 - Coordinates metadata : unit, standard_name, axis (x, y, z, t)
- Verification principles
 - Three kinds of variable list: Ok, Potential, not valid
 - Ok : the three features are correct
 - Potential : at least one feature is correct
 - Not valid : no feature is correct
 - One variable selected from the Ok list
 - User interaction on Ok and Potential list
 - Status view
 - Modification of one metadata
 - Help on editing feature : proposition of correct value

5

• Dynamic adaptation of Ok, Potential, Not Valid lists

Verification

- Other cases
 - Grid, contiguous sets
 - Coordinate only for reference points
 - Not existing coordinate
 - Add a by-default variable (and dimension 1)
 - Brest, level 120, today
 - Editable value

A verification and correction tool

Fichier Option							
parcourir C:\Users\info\Desktop\0NCifremer\0S_PAP-3_201205_P_deepTS.nc							
Coordonées Caractéristique Extraction							
Longitude Latitude Depth Time							
Vertical choisie							
DEPTH							
Vertical correct							
N	JAME	AXE		STANDARD_NAME		UNITE	
	DEPTH	Z		depth		meters	
Vertical potentielle							
N	JAME	AXE		STANDARD_NAME		UNITE	
	PRES			sea_water_pressure		decibar	9 1
							0 (

OceanSITES example Global Attribute

Constraints on attribute

time_coverage_end="2006-Final date of the data in UTC. time coverage OceanSITES 03-05T23:59:29Z" end Naming constraints • Where time is specified as a string, the ISO8601 standard "YYYY-MM-DDThh:mm:ssZ" time coverage end value isStandardizedBy (ISO8601); • Verification principle Constraints expressed u ng OCL • inv checkGlobalAttributeValue time coverage end: self.globalAttributes->exists(e | e.name.matches('^time coverage end\$')) implies self.globalAttributes->select(e | e.name.matches('^time_coverage_end\$'))->forAll(g g.value.matches('^\\d{4}-[0-1][0-3]-[0-3]\\d{1}T[0-2]\\d{1}:[0-5]\\d{1}:[0-5]\\d{1}Z\$')

Normalization

- After the verification step
- Coordinates and time axis
 - name (not in CF) and standard_name
 - Unity and type
- Other variables
 - Attributes
- Grids, compression
 - Grid : create coordinates variables
 - Flatten contiguous sets

Storage policy

- Logical and physical structure are different
 - Logical : object-oriented generic data structure
 - Physical : OO, RDB, NoSQL, ...
 - Optimal storage policy
 - Performance dependent
 - Work in progress
 - OO and/or Relational DB for metadata
 - NoSQL for data
 - Caching data mechanism

Patterns extraction

- Patterns
 - Profile : dimension for Z is strictly positive, dimension of 1 for X,Y and T
 - Time series : dimension for T is strictly positive, dimension of 1 for X,Y and Z
 - 3D : dimensions for X, Y, Z are strictly positive, dimension of 1for T
 - 2D : dimensions for X, Y are strictly positive, dimension of 1 for Z and T
 - 3D Movie : dimensions for X, Y, Z, T are strictly positive
 - 3D Trajectory : dimensions for X, Y, Z, T are strictly positive and equals, one value for each (x,y,z,t)
 - Automatic extraction
 - 3D : a set of profiles = {a profile for each *PointOnEarth*, when *Depth* is more than 1}

13

~ CSML (Climate Science Modelling Language)

Analysis tools

- Based on patterns
 - A specific input model
- Data to tools
 - Configurable : which data are used as inputs for the tool
- Generic tools
 - Configurable through a set of tool parameters

Example of time series visualization

- Input model
 - Time and variable values
 - Tool parameters
 - Title, image, logo, legend
 - position
 - List of time series
 - color
 - Minimum, maximum, step for values and time
 - Examples
 - Student number in Master
 - Temperature evolution

Modeling approach

- Model-Driven Engineering
 - All is model (objects in our case)
 - Meta-model (Class diagram and OCL expressions in our case)
 - Not a central and unique model but... a set of concern-oriented models
 - File format model (CDM to model NetCDF)
 - Verification model (CdmCL based on OCL)
 - Logical model (georeferenced and timed measures)
 - Storage policy models (performance oriented)
 - Tool-oriented models (what is necessary for the tool? what parameters can be adapted?)

Conclusion

- NOUMEA : a global approach to deal with data
 - NetCDF verification and normalization
 - Axis and metadata constraints
 - Models at different levels
 - Object-oriented
 - Automatic pattern extraction
 - Time series, trajectories, profiles
 - Generic tooling
 - Based on patterns
 - Configurable
 - Adaptable to others data and standards

On Going Works

- Other file formats and standards (CSV, XML, ...)
 - Big data integration
 - NoSQL
 - New generic analysis and visualization tools
 - The GeoCMS tool for visualization
 - New applications
 - Quality Control and statistical analysis
 - Data and tools interoperability
 - A French initiative with representative actors
 - Open to international collaborations

BIBLIOGRAPHY

- Geographic information Observations and measurements (ISO 19156)
 - UML profile for observations
 - Generic model for scientific observations
 - Based on UML
 - 2013, OGC
- CSML (Climate Science Modelling Language)
 - OCL constraints to determine type of geometric data
 - grid, profile, trajectory, timeseries, section, ...
 - Based on CF and CDM
 - 2011, OGC
- Information system for « network of temperature sensors of South and South West Pacific region"
 - A data exchange and management service
 - Generic simple data and metadata model for measures
 - 2012, GOPS (Grand Observatoire de l'environnement et de la biodiversité terrestre et marine du Pacifique Sud)