

Climate Information Platform for Copernicus

CLIPC : Demonstrating the MyCLIPC toolkit for viewing and processing climate impact indicators

Peter Thijsse (MARIS), Wim Som de Cerff (KNMI), et al. – 11 October 2016

www.clipc.eu

Outline

- 1. Introduction to CLIPC
- 2. Exploring with the MyCLIPC Impact Indicator Toolkit (background & screens)
- 3. Underlying dataset catalogue, processing services, and techniques

1. What is CLIPC?

- The CLimate Information Portal for Copernicus project aims to develop:
 - A portal to access climate data and information
 - Tools and services for working with them

 One of the FP7 precessor projects for EU C3S – Copernicus Climate Change Service (comparable to CMEMS)

1. What is CLIPC?

- Aimed at climate scientists, (socio-economic) impact researchers, boundary workers. NOT End-users / decision makers
- Data: Climate observations and projections data and impact indicators
- Standards: Use existing standards, but also expand existing vocabularies and data and metadata standards
- Re-use existing concepts, components and services as much as possible but also innovate

2. Exploring with the indicator toolkit

Approach for the toolkit

CLIPC discussions have focused on a virtual user "Jake Smart" as a boundary worker.

"What should he need to create an advice?"

- Explore the datasets (time series, histogram, etc)
- The possibility to view set of indicators per theme: Thematic approach
- Function "compare": compare indicators visually and via metadata.
- Function "combine": Combine 2 indicators into a third via calculation/algorithm selection
- All integrated in one user interface

Basic software for toolkit developments

- OpenLayers 3 /JavaScript / Php
- KNMI Adaguc visualization server. Visualises NETCDF
 CF data from an OpenDAP server.
- Processing runs via KNMI's Climate4Impact WPS services.

Features of the indicator toolkit

<u>Try yourself via</u> <u>http://www.clipc.eu/indicator_toolkit/indicator_toolkit.php</u>

www.clipc.eu

Select and view indicator datasets

www.clipc.eu

Check metadata, timestamp, histogram

www.clipc.eu

View timeseries - Ensembles

www.clipc.eu

Compare indicator datasets (maps and metadata)

www.clipc.eu

Combine indicators – create time period averages

Calculating averages over 20/30 years on the fly

dicator one			x
Theme or My Data:	Precipitation and floods		*
ffect:	Consecutive dry days 🗸		*
lodel/Dataset:	cdd icclim-4-2-3 KNMI ens- 🗸		
ime Period:	2021 - 2050	Y	
Weight:	No period selected	(\$ 1)	
ïew full metadata	2021 - 2000 2031 - 2060 2031 - 2050		
me range: 2006 - 20	9:2081 - 2100		
- 264.0	1000	1	1.0
- 222.0	6.45	1	Ale and
- 179.0	1000		14
- 137.0			Jan 1
- 95.0			AS A
- 52.0			and the second
- 10.0			11-90.00

www.clipc.eu

Combine indicators – subtract = difference map

www.clipc.eu

Combine indicators – add = Impact dataset

www.clipc.eu

Combine indicators – average the result over areas (NUTS = EU Admin regions)

NUTS 0 (Countries)

NUTS 3 (Departments)

www.clipc.eu

Re-use your output

www.clipc.eu

Or download from your "basket"

www.clipc.eu

3. Underlying dataset catalogue, processing services, and techniques

www.clipc.eu

Wizard access to MyCLIPC processing services

- Processing datasets/indicators yourself, in the toolkit and via "wizards" on top of WPS's
- Users login before being able to use the tools. This provides the user their own "working environment" and allows to save datasets, view job progress, etc.
- Results can be used, previewed, saved and shared.

Dataset catalogue

• Dataset catalogue:

- Overview of CLIPC validated climate datasets (ESGF – STFC server) and climate impact indicators (KNMI server)
- First goal: Harvesting daily latest status and is input data for the toolkit
- Second goal: Harmonising the metadata (ISO19139) as much as possible. The catalogue offers search and view of the datasets metadata.

www.clipc.eu

www.clipc.eu

Linear

Min/max

Subtract

Multiply

Divide

calculations

Raster data

Add

_

Toolkit integration and indicator processing

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 607418

www.clipc.eu

۲

Use of open standards and Open Source software:

- Data access over OPeNDAP
- Online analysis using WPS
- Online visualization using WMS
- Subsetting using WCS
- Metadata using CSW
- Single Sign On

- → THREDDS
- → PyWPS and ICCLIM
- → ADAGUC
- → ADAGUC
- → Geonetwork
- → OpenId, OAuth2, delegation using MyProxy X509, Access Tokens

www.clipc.eu

Final message

- Lots of parallels with opportunities in marine domain (SeaDataCloud, CMEMS, EMODNet)
- Standardisation of datasets and metadata is key
- Focus on the user, offer matching services, and technically there is a massive potential

